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ABSTRACT
Performance regression testing is an important step in the
production process of enterprise applications. Yet, analysing
this type of testing data is mainly conducted manually and
depends on the load applied during the test. To ease such
a manual task we present an automated, load-independent
technique to detect performance regression anomalies based
on the analysis of performance testing data using a con-
cept known as Transaction Profile. The approach can be
automated and it utilises data already available to the per-
formance testing along with the queueing network model of
the testing system.

The presented “Transaction Profile Run Report” was able
to automatically catch performance regression anomalies ca-
used by software changes and isolate them from those caused
by load variations with a precision of 80% in a case study
conducted against an open source application. Hence, by
deploying our system, the testing teams are able to detect
performance regression anomalies by avoiding the manual
approach and eliminating the need to do extra runs with
varying load.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Measurement, Performance

Keywords
Application change, performance models, regression testing

1. INTRODUCTION
Performance regression testing is an important step of

software production process and has the goal of ensuring
that a newer version of the software performs no worse than
the previous versions of the same software [1]. To achieve
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this, the application is exposed to a field-like load via load
generator software such as HP LoadRunner [2] and the open
source tool JMeter [3]. This load is applied for an extended
period of time and as a result a huge amount of performance
counters will be collected and analysed for performance re-
gression anomalies.

Virtual users interact with the enterprise application un-
der test by triggering various transactions such as logging in
to the system or checking out an item. These transactions
propagate through the application tiers to fulfil the users
request. The time required to complete each transaction is
an important metric to assess the application’s quality.

During the performance run the following two types of
data are collected and analysed.

1. Transaction Response Time (TRT): Measures the time
required to process a request by all system resources
[4]. It is generated by the load generator software along
with the transaction types and rates.

2. Resources Utilization (RU): Represents the utilization
of various system resources (CPU, Disk I/O and Net-
work). It is produced by the system monitoring tools
such as NMON, Perfmon and TCPDump on each server.

The test engineer will then investigate those counters to
look for performance regression anomalies, which include
any increase of TRT or RU [5]. For example if the TRT
of a certain transaction is increased from 0.32 sec to 0.39 sec
then the test run will be marked as a Fail. Otherwise the
run is declared as Pass. This process is depicted in Figure
1.

Figure 1: Performance Regression Testing Process
[5].

In addition to comparing new and previous releases of the
software, it is also important to compare the performance
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between software runs within the development process. This
is important because it is only at this early stage such re-
gressions can be actively analysed and fixed.

In the process of detecting performance regression anoma-
lies, the testing team faces the following two challenges:

1. Manual Process: The manual inspection of performance
counters in search of anomalies is error-prone and time
consuming. Furthermore, the amount of data collected
from performance test runs is large and may contain
hundreds of performance counters. In addition, given
that the performance regression testing process is usu-
ally held late in the project lifecycle [1], the time re-
quired for this manual analysis is often not available,
in which case an automated approach is required [6].

2. Load Variations: Frequently, the new performance test
runs are conducted with a different load than the pre-
vious release to account for varying field-like scenarios
[7]. Hence, an increase of any performance counter
(i.e. TRT or RU) could be caused by either the in-
crease of the load applied to the system or an anomaly
in the new software. To distinguish between these two
cases, an extra performance run with a load similar
to the previous release would be needed which is time
and resource consuming. Hence, a new performance
regression anomaly detection approach should not be
sensitive to the load applied to the system.

In this paper, we combine concepts from queueing network
representation of computer systems as used in the capac-
ity management process, with the performance regression
testing concepts to achieve an automated, load indepen-
dent approach to detect performance regression anomalies
caused by a software update. Our approach should speed
up the lengthy performance regression testing process and
consquently speed up the overall software production pro-
cess and consequently result in reduced development cost
and time to the market.

To achieve this, we present the use of the output of the
performance regression testing run (TRT and RU) along
with the Queueing Network Model (QNM) of the system
under test, such as the one shown in Figure 4, to calculate
the so called Transaction Profile [8] which we believe reveals
important characteristics of the transactions performance.
By this we extend on our previous work [9] where we sug-
gested measuring the TP using a load generator software.

2. PRESENTED TRANSACTION PROFILE
(TP) APPROACH

2.1 What Is the TP?
To fulfil users’ requests, a software transaction propagates

through the various system resources, such as CPU and Disk
I/O, across the various servers in all the system tiers [8]. The
total time required to process the requests on all resources
is the TRT. It includes the time spent on each resource unit
as well as in its queue.

It is worth mentioning that the request may visit each
resource multiple times and requires a certain service time
at each visit. At the same time, the request may wait in
resource queues if the processing unit of the corresponding
resource is in use by another request. Additionally, the Ser-
vice Demand is defined as the total time required to process

a request on a certain resource during all visits, excluding
the time spent in the queue [10] [11].

Given the above, the TP is defined as the series of service
demands of a request (transaction) over all system resources
[8]. In another words, the TP is the TRT when the request
is the only one in the system (no queues), or the TP is the
minimum bound of the TRT. The TP is usually represented
as a horizontal bar as shown in Figure 2.

From a closer look at the TP, we can see that it depends on
the service time on each resource and the number of visits to
that resource which can only be determined by the software
characteristics (implementation). For example, the TP may
change if the software is modified to require an extra visit
to the hard disk. At the same time the TP is not dependent
on the load applied to the system as, by definition, it does
not include the time spent in the queue. Hence, the TP
represents the fundamental characteristics of the software
and is independent of the load.

The TP is not a metric that corresponds to a real usage
scenario, instead it is just a hypothetical concept used with
QNM of software systems to predict system performance as
is shown in Section 3.

2.2 Presented TP Usage in Regression Testing
Given the above description, we present the use of the TP

to detect changes of the software that affect its performance.
Our hypothesis is:
An automated (or visual) comparison of the TPs between

two releases can highlight performance regression anomalies
caused by software updates as opposed to those caused by load
variations.

Figure 2: Comparison of the TP for the “New Prod-
ucts” Transaction Over Two Releases.

As shown in Figure 2, the TPs of the “New Products”
transaction over two releases show an increase of the TP in
the later release. This is considered a performance regression
anomaly per our hypothesis. A closer look at Figure 2 shows
that the Server CPU component of the TP contributes most
to the increase of the TP.

The use of TP as described above fixes the two issues of
performance regression testing, the manual approach and
the load dependency.

For this paper, we assume that the hardware platform
is fixed between the two releases. The topic of hardware
evolution will be explored in our future work.

2.3 TP Run Report
To promote the use of our presented TP approach we de-
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signed the TP Run Report shown in Figure 3. The TP
Run Report is produced by applying our presented technique
against the normal performance run data and the TPs from
the previous run. The TP Run Report consists of the TP
Report Summary and the Detailed TP Graph.

Figure 3: TP Run Report.

2.3.1 TP Report Summary
The TP Report Summary shown in Figure 3a provides

a list of transactions for which the TP in the new release
deviates (increases) from its value in the previous release
by a value above a pre-determined threshold (for example
3%). Those are the transactions which are declared by our
approach as potential performance regression anomalies.

2.3.2 Detailed TP Graph
To get an insight on each of those anomalies, the test-

ing engineer may click on the link under each TP deviation
value to show the corresponding Detailed TP Graph which
is shown in Figure 3b. Such a graph provides information
about actual values of the TPs as well as the hardware re-
sources making up the TP and the contribution of each of
them to the detected deviation. In this example we can see
that the Server CPU contributes most to the anomaly.

3. QUEUEING NETWORKS OF COM-
PUTER SYSTEMS

3.1 Queueing Network Model
Computer Systems can be represented by a QNM [8] [11]

[12] as the one presented in Figure 4. It consists of multiple
nodes, where each node represents a hardware resource such
as CPU, Disk I/O and Network. Users initiate request at
the Users node that will pass through the various nodes to
fulfil the user request. Each node consists of a processing
unit and a queue. The processing unit will serve the request
if it is free or the request will have to wait in the queue [11].
A request may visit each resource one or more times.

In the queueing network terminology, the nodes are called
stations, the transaction types are classes, and the transac-
tion is called a customer [12]. The time required to serve a
customer by each node on one visit is known as the service
time. The time required to service the request on a certain
node during all visits is known as service demands [12] (the
product of the service time and number of visits).

Figure 4: QNM of a Computer System.

Given the stations, classes, customers incoming rate, the
service times and number of visits, QNM such as the one
shown in Figure 4 can be solved [13] to get the response
time (TRT) and utilization (RU) of the various classes and
stations respectively.

3.2 Solving Queueing Network by Service De-
mands

To solve a QNM one needs to specify the service times and
number of visits to resources along with the other parame-
ters. This allows to get the various system level counters,
such as system TRT and throughput, and the per-station
counters, such as the RU, throughput and residence times
(total time spent on each station). But if the system satis-
fies the BCMP hypothesis [13] [14], then the service demand
may be used instead of the service time and number of visits
[15] in which case the QNM can be represented as shown in
Figure 5 [15]. In this case, we cannot obtain some of the
per-station level counters like the stations throughputs and
residence times, since this is a level of detail that we may
model only if we use the service times and visits.

Figure 5: Representation of Computer System us-
ing Service Demands Instead of Service Times and
Visits to Resources.

Given that we deal with service demands, and not the ser-
vice times and number of visits, and adding to this that the
computer resources approximately satisfy [16] the BCMP
hypothesis, we conclude that we can represent computer sys-
tems as shown in Figure 5 when we solve the QNM [17].

4. PRESENTED APPROACH DETAILS

4.1 Normal Solving of Queueing Networks
To solve a QNM such as the one shown in Figure 5, the

following three aspects are needed.

1. QNM of the system.
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2. Load characterization, mainly the transactions types
(classes) and rates.

3. Service demands (and so the TP) of the various trans-
actions (classes) on each resource (station).

Figure 6: Normal Solving of Queueing Networks.

Knowing the above, the model can be solved via tools
such as the Java Modelling Tool (JMT) [18] to get useful
information about the system, mainly the TRT and RU for
the various transactions (classes) and resources (stations)
respectively [13]. This process is depicted in Figure 6. This
process is used in various fields, for example the capacity
management of computer systems.

In performance regression testing, we have the two out-
puts in Figure 6 which are the TRT and RU. The Load info
and the QNM can be found from the testing system and load
generator software. Yet, the service demands are the target
of the performance regression testing (to calculate the TP)
and so we present an inversed process as shown in Figure 7.

Figure 7: Presented Approach to Obtain TP from
Performance Testing Data.

4.2 Reverse Solve Queueing Networks
We present a search based approach to reverse solve the

QNM to obtain the service demands, and accordingly the
TPs, as shown in Figure 8.

An initial TP value is used to solve the model (the load is
fixed across the process and so it is omitted from Figure 8).
The initial TP value can be the TP from the previous run or

Figure 8: Reverse solve Queueing Network via JMT
Using a Search Based Approach.

it can be measured via a single user test. It can also be set
to a random value, but this will increase the time required
to converge the search.

Furthermore, the model is solved via JMT and the TRT
and RU are calculated and subsequently compared to the
target TRT and RU (which are the outputs of performance
testing). If those mismatched, a new value of the TP will be
nominated based on the difference between the calculated
and target TRT and RU. This will keep going until the cal-
culated and target TRT and RU match, in which case the
target TP is found and can be used to compare to TP from
previous run as shown in the next section. The search stops
when the required TP is found or when a loop is detected,
which could happen when the QNM does not accurately
reflect the system. There are two reasons for QNM inaccu-
racies. First, due to a missing resources caused by dropping
the performance counters from one of the servers. Second,
QNM can be inaccurate if the software resources, such as
the number of threads and available database data sources,
form the real bottleneck of the system.

4.3 Overall Presented Outline
Figure 9 shows the diagram of the overall presented pro-

cess. The New Run Data is used as an input to this process.
The load generator files are parsed to obtain transactions
information which includes the TRT, transaction types and
rates. The system monitoring files are parsed to get the RU
and resources types. The QNM, such as the one shown in
Figure 5, is then built by mapping the transaction types to
classes and resources types to stations. At the next step,
all of the QNM, TRT, RU and transaction rates are used to
reverse solve the system to get the TP for all transactions
as shown in Figure 7. At the final step, those TPs are com-
pared to the TP Previous Run(s) to generate the TP Run
Report similar to the one shown in Figure 3.

5. CASE STUDY

5.1 System Information
We conducted our tests and an open source web 2.0 appli-

cation JPetStore 6.0 [19]. It is built on JEE technology and
simulates an application to offer various types of pets online.
The application runs on a Tomcat Application Server and
was modified to run on a MySQL Database Server. The
tests were performed on the set of transactions shown in
Transaction column in Table 1.
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Figure 9: Our Presented Process.

Table 1: Defects Injected “Individually” in Various
Transactions and the Resulted TP Deviation.

Run Transaction Injected
Anomaly

TP
Deviation

(from
baseline)

1 Home. No index on
corresponding
table’s key
columns.

20%
2 List Products. 7%
3 List Items. 5%
4 Checkout. 4%

5 List Items. Enabling logging
on transaction
code.

5%
6 Add to Cart. Not caught
7 Checkout. Not caught

8 Home.
Not limiting the
database query.

7%
9 List Products. 6%
10 List Items. 4%

The system was deployed as 3 tiers architecture. The
client machine runs the JMeter load generator software. The
Application Server contains the Tomcat Application Server
on which the JPetStore 6.0 application is deployed. While
on the Database Server the MySQL server is deployed and
contains the application database which was populated by
an SQL script that we generated.

5.2 Case Study Design
First a baseline run was executed with the original appli-

cation and the TPs were found and recorded. Then a total
of 10 runs were executed on modified versions of the appli-
cation. In each of these versions one transaction code was
modified to contain a performance defect from those com-
monly introduced by developers. The TP Run Report was
generated for those builds and investigated to find if those
defects were really caught. Also, the Detailed TP Graph
of each anomaly was investigated to see if it relates to the
nature of the bug introduced. Additionally, we made sure
no TP deviation was noticed on the transactions for which

the code has not changed.
In our study we define precision as:

Precision = (1 − N

T
) ∗ 100%

N: Number of tests, each with one injected defect that has
not been caught.

T: Total number of tests, each with one injected defect.
We used a set of the common performance defects as

shown in the Injected Anomaly column in Table 1.
Although we introduced one performance defect at a time,

the technique works well with multiple defects. This will be
explored more in our future work when we study a real En-
terprise Application. Generating one TP Run Report took
less than a minute for this simple topology.

5.3 Results
The tests were performed with JMeter to simulate 35 users

running the transactions in Table 1 by a certain sequence.
After generating the TP Run Report of the various runs,
we found that 8 of the 10 injected anomalies were caught,
indicating a precision of 80%.

In the first 4 runs of Table 1, we got the four cases caught
with considerable deviation of 20% for the Home transaction
and for the List Products, List Items and Checkout Items
we recorded 7%, 5% and 4% respectively. Investigating the
Detailed TP Graph we found that the Database Server CPU
was the main contributor to the TP deviation which is ex-
pected from this kind of defects. But a little change was
recorded from the hard disk of the Database Server which
could be caused by the fact that the system has a huge RAM
and so most of the database is already loaded into it.

In the following 3 runs, we got only one defect caught by
the TP Run Report which is for the List Items transaction
and with a deviation of 5%. This can be explained by the
fact that the amount of logging statements added to this
small application will not have a noticeable impact on such
powerful machines.

In the last 3 runs, all defects have been caught with a
deviation of 7%, 6% and 4% respectively. Looking into the
Detailed TP Graph we found that the major deviation was
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caused by CPU of the Application Server as expected. But
we did not find any contribution of the network as we ex-
pected but this could be due to the relatively low amount of
data in the database and the fast network connection.

6. RELATED WORK
The manual approach is the most common way used in in-

dustry to analyse performance runs data looking for regres-
sion anomalies. The testing engineer will have to manually
analyse performance data looking for an uptrend in RU of
one of the server’s resources or an increase in the TRT of a
transaction.

Statistical techniques were among the first approaches to
be proposed by researchers to automate the detection of per-
formance regression anomalies [7] [20]. They proposed the
use of Statistical Process Control charts (SPC) which is used
to control the quality of various processes in industry. The
old runs data (baseline) is used to draw the Upper Control
Limit (UCL) and Lower Control Limit (LCL) as well as the
Centre Line (CL). Then the new runs data is tested against
those limits and a violation ratio is calculated to represent
the up normal values. If this violation ratio exceeds a certain
pre-determined threshold an anomaly is raised. Yet, this ap-
proach is still sensitive against load variations as it will not
distinguish between changes due to load changes from those
due to software updates.

Inferring the service demands (and so the TP) from TRT
and RU has been proposed before by some studies. This is
done because measuring TRT and RU is much easier than
measuring the service demands. Casale et al [21] suggested
to calculate the service demand from the RU by solving a
linear regression between them. They assume multiple runs
with various loads are provided. This approach assumes the
system can be modelled by a single server and that multiple
runs with different loads can be provided. The complexity
of the systems under test and the resources and time con-
straint make those assumptions inadequate to be used in
performance regression testing.

7. CONCLUSIONS AND FUTURE WORK
In our research, we showed that the TP can be automati-

cally generated and provide a simple graphical aid to analyse
performance testing data to detect performance regression
anomalies. Furthermore, the TP is independent of the load
applied to the system which saves time and resources run-
ning extra performance runs with a varying load.

The presented TP Run Report approach was verified in
an open source web application and proved to be able to
detect performance regression anomalies with a precision of
80%.

Our automated, load-independent approach improves the
performance testing process, reduces the cost and time and
therefore improves the software production process.

It is a major advantage to be able to build the QNM au-
tomatically in order to automate the entire process and save
the testing team from the burden of maintaining the QNM
of the system. Yet the accuracy of the BCMP approxima-
tion, used to facilitate the automated building of the QNM,
is another area that requires more research to find any con-
straints to its applicablity to various types of web 2.0 traffic.

The topic of hardware evolution between releases will also
be explored in our future work.
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